skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duplyakin, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. All computing infrastructure suffers from performance variability, be it bare-metal or virtualized. This phenomenon originates from many sources: some transient, such as noisy neighbors, and others more permanent but sudden, such as changes or wear in hardware, changes in the underlying hypervisor stack, or even undocumented interactions between the policies of the computing resource provider and the active workloads. Thus, performance measurements obtained on clouds, HPC facilities, and, more generally, datacenter environments are almost guaranteed to exhibit performance regimes that evolve over time, which leads to undesirable nonstationarities in application performance. In this paper, we present our analysis of performance of the bare-metal hardware available on the CloudLab testbed where we focus on quantifying the evolving performance regimes using changepoint detection. We describe our findings, backed by a dataset with nearly 6.9M benchmark results collected from over 1600 machines over a period of 2 years and 9 months. These findings yield a comprehensive characterization of real-world performance variability patterns in one computing facility, a methodology for studying such patterns on other infrastructures, and contribute to a better understanding of performance variability in general. 
    more » « less
  2. Empirical performance measurements of computer systems almost always exhibit variability and anomalies. Run-to-run and server-to-server variations are common for CPU, memory, disk, and network performance characteristics. In our previous work, we focused on taming performance variability for memory, disk, and network and established an interactive analysis service at: https://confirm.fyi/ to help users of the CloudLab testbed better plan and conduct their experiments. In this paper, we describe our analysis of CPU variability based on over 1.3M performance measurements from nearly 1,800 servers and present our initial findings. The focus of this work is on capturing hardware variability, which can make repeatable experiments more difficult and can impact conclusions; it it this important for systems researchers to understand. (We note that, though we do not study it in this work, in the cloud, multi-tenancy and resource sharing an exacerbate the problem.) Variability also inevitably impacts performance and operation of middleware and high-level applications, contributing to the straggler problems in many domains, including HPC, Big Data, and Machine Learning, and on many types of cyberinfrastructures. We analyze the data from the CloudLab servers allocated in an exclusive fashion, with no virtualization. While our analysis focuses on the testbed that aims to promote reproducible research, we believe our approach and the findings can be of value to people who manage, analyze, and utilize shared computing resources in supercomputers, clouds, and datacenters. 
    more » « less
  3. Load balancing and partitioning are critical when it comes to parallel computations. Popular partitioning strategies based on space filling curves focus on equally dividing work. The partitions produced are independent of the architecture or the application. Given the ever-increasing relative cost of data movement and increasing heterogeneity of our architectures, it is no longer sufficient to only consider an equal partitioning of work. Minimizing communication costs are equally if not more important. Our hypothesis is that an unequal partitioning that minimizes communication costs significantly can scale and perform better than conventional equal-work partitioning schemes. This tradeoff is dependent on the architecture as well as the application. We validate our hypothesis in the context of a finite-element computation utilizing adaptive mesh-refinement. Our central contribution is a new partitioning scheme that minimizes the overall runtime of subsequent computations by performing architecture and application-aware non-uniform work assignment in order to decrease time to solution, primarily by minimizing data-movement. We evaluate our algorithm by comparing it against standard space-filling curve based partitioning algorithms and observing time-to-solution as well as energy-to-solution for solving Finite Element computations on adaptively refined meshes. We demonstrate excellent scalability of our new partition algorithm up to 262,144 cores on ORNL's Titan and demonstrate that the proposed partitioning scheme reduces overall energy as well as time-to-solution for application codes by up to 22.0% 
    more » « less
  4. Performance variability has been acknowledged as a problem for over a decade by cloud practitioners and performance engineers. Yet, our survey of top systems conferences reveals that the research community regularly disregards variability when running experiments in the cloud. Focusing on networks, we assess the impact of variability on cloud-based big-data workloads by gathering traces from mainstream commercial clouds and private research clouds. Our data collection consists of millions of datapoints gathered while transferring over 9 petabytes of data. We characterize the network variability present in our data and show that, even though commercial cloud providers implement mechanisms for quality-of-service enforcement, variability still occurs, and is even exacerbated by such mechanisms and service provider policies. We show how big-data workloads suffer from significant slowdowns and lack predictability and replicability, even when state-of-the-art experimentation techniques are used. We provide guidelines for practitioners to reduce the volatility of big data performance, making experiments more repeatable. 
    more » « less
    Free, publicly-accessible full text available February 1, 2030